Die Wassergüte der Elbe im Jahre 2001

Wasserführung der Elbe

Der mittlere Abfluss der Elbe lag im Jahre 2001 an der Oberen Elbe im Bereich des langjährigen Mittelwertes. An der Mittelelbe war der mittlere Abfluß deutlich niedriger als der längjährige Mittelwert.

Tab.1 Abfluss der Elbe

Pegel		Dresden	Neu Darchau
MQ 2001	m^3/s	320	604
MQ langjährig	m ³ /s	1931-2000 323	1926-1999 710
HQ Frühjahr 2001	m^3/s	1140	1560

Das Jahr 2001 war ein eher trockenes Jahr mit einem niedrigen Frühjahrshochwasser.

2001 gab es keine schwere Sturmflut im Tidebereich der Elbe.

Belastung der Elbe

An der Messstation Schnackenburg (Strom-km 474,5), an der Landesgrenze zwischen Niedersachsen und Sachsen-Anhalt, werden 83 % des Elbeeinzugsgebietes erfasst. Die in Tab. 2 aufgeführten Jahresfrachten machen die Änderungen und Sanierungserfolge in den neuen Bundesländern deutlich.

Tab.2	Jahresfrachten der Elbe —	Jahre mit	vergleichbarem	Abfluss —	Messstation
	Schnackenburg (Strom-km	474,5)	J		

	1985	1986	1989	1992	1996	1997	1998	1999	2000	2001
Abfluss (MQ) m ³ /s (Neu Darchau)	558	716	520	515	669	608	649	674	628	604
BSB_{21} 10^3 t/a O_2	-	570	430	220	190	190	190	220	210	190
Chlorid 10 ³ t/a Cl ⁻	3700	4400	3500	2400	2600	2600	2500	2600	2400	2200
Ammonium 10 ³ t/a N	54	49	32	7,7	9,4	4,0	3,1	3,1	2,4	1,9
Nitrat 10 ³ t/a N	54	97	75	88	100	92	89	98	87	74
o-Phosphat 10 ³ t/a P	3,4	3,5	2,2	1,6	1,8	0,97	0,95	0,82	0,80	0,94
Quecksilber t/a	28	23	12	4,2	1,7	1,4	1,6	1,4	1,3	1,2
Cadmium t/a	13	13	6,4	5,3	5,6	5,6	5,1	6,5	5,6	5,9
Blei t/a	110	120	110	76	100	100	73	57	63	59
Chloroform t/a	14	24	13	2,0	1,1	1,6	3,6	1,5	0,32	1,0
Trichlorethylen t/a	40	31	7,3	1,9	1,2	0,87	0,26	0,54	0,29	0,17
Perchlorethylen t/a	13	22	8,3	1,6	1,9	0,90	0,26	0,55	0,41	0,47
Lindan t/a	0,57	0,67	0,49	0,32	0,38	0,42	0,66	0,25	0,14	0,20
Hexachlorbenzol t/a	0,11	0,13	0,15	0,05	0,12	0,18	0,23	<0,10	0,06	<0,05
Pentachlorphenol t/a	2,4	3,0	1,8	0,48	<0,02	0,28	-	-	-	-

Die Mengen der meisten Schadstoffe haben seit Anfang der 90er Jahre deutlich abgenommen. In der zweiten Hälfte der 90er Jahre setzte sich der Rückgang in kleinen Schritten im wesentlichen fort. Allerdings sind für viele Stoffe die Zielvorgaben der IKSE/ARGE Elbe zum Schutze der aqatischen Lebensgemeinschaften noch nicht erreicht. So haben in Jahre 2001 die folgenden Messgrössen die Zielvorgaben zum Teil deutlich überschritten: Gesamt-Stickstoff, Gesamt-Phosphor, Quecksilber, Cadmium, Blei, Kupfer, Zink, Arsen, Hexachlorbenzol und AOX. In den Sedimenten findet man diese Stoffe in hohen Konzentrationen wieder. Hier ist auch Tributylzinn, die polychlorierten Biphenyle und DDT deutlich angereichert.

Auf den Sauerstoffhaushalt der Elbe wirkten sich die veringerten Einträge positiv aus. Allerdings kommen noch immer kritische Situationen vor. Durch Algenmassenvorkommen im Sommer sank der Sauerstoffgehalt nach dem Absterben der Algen unterhalb Hamburgs zweimal unter den fischkritischen Wert von 3 mg/l. Am 05.-07.07.2001 kam es zwischen Entenwerder und Blankenese zu einem Fischsterben, dass besonders Jungfische traf. Beobachtet wurden auch adulte tote Flundern, Rapfen und Brassen.

Im Vorjahr wurde das Fahrwasser der Unterelbe vertieft. Unterhalb des Hamburger Hafens beträgt die Solltiefe jetzt 15,3 m. Die Auswirkung dieser Maßnahme auf die Wasserstände, die Transportraten und den Sauerstoffhaushalt wird in den folgenden Jahren durch Beweissicherungsmessungen beobachtet.

Am 22.02.2001 begann die teilweise Zuschüttung des Süßwasserwatts "Mühlenberger Loch" für eine Werkserweiterung des Airbus-Werkes auf Finkenwerder.

Seehunde in der Elbe

Eine Gruppe von ca. 50 Tieren lebt seit vielen Jahren dauerhaft im Bereich Medemsand und Medemgrund zwischen Brunsbüttel und Cuxhaven. Öfter werden auch bei Schwarztonnensand kleinere Gruppen beobachtet. Im Jahr 2001 gab es zwischen dem 25.09. und 08.11. 5 Meldungen von einzelnen Seehunden im Hamburger Bereich. Leider war davon eine Beobachtung ein Totfund bei Övelgönne.

Güteklassen

Für die folgende Darstellung wurden die verschiedenen Schadstoffe in farbige Güteklassen eingestuft. So sind Belastungsschwerpunkte bei Schmilka oder an der Muldemündung leicht erkennbar.

Wassergütestelle Elbe Neßdeich 120-121 21129 Hamburg wge@arge-elbe.de http://www.arge-elbe.de

Klassifizierung der 90%-Werte* ausgewählter Kenngrößen in frischem, schwebstoffbürtigem Sediment (Monatsmischproben) 2001

	Que ^c c	Kajiber Cadr	giun 8	į.	Lugiet	Link	Chrom	Hickel	Arsen
Schmilka	II-III	II-III	II-III	II-I	II II	I-IV	II-III	II-III	II-III
Mulde	II-III	IV	III-IV	II-I	II	IV	II-III	III	IV
Schnackenburg	II-III	III-IV	III	II-I	II II	I-IV	II-III	II-III	III
	d.HC	d Britch	, AHCI	PÀ	DÉ OÀ	IDD P.A.	idd og'r	odi pai	Di HCB
Schmilka	II	III	II	II-III	II-III	III-IV	II-III	III-IV	IV
Mulde	III-IV	IV	II-III	II-III	III-IV	III-IV	IV	IV	III
Schnackenburg	II-III	II	I-II	I-II	I-II	II-III	I-II	II-III	III
	PCB.	41.78 PCB 41	1.5° PCB5	Ar. 101	³ , 138	7CB	41.180 A.180	~	
Schmilka	III-IV	III	III	IV	IV	III-IV	III		
Mulde	III	III-IV	II-III	III-IV	III	III	III		
Schnackenburg	II	II	II-III	II-III	III	II-III	III		

Güteklassen für ausgewählte Kenngrößen

Меßдгößе		Hintergrund- wert (Elbe)	I	I-II	II	II-III	III	III-IV	IV
Quecksilber	(mg/kg)	0,2-0,4	HGW	<0,5	<0,8	<5	<10	≤25	>25
Cadmium	(mg/kg)	0,2-0,4	HGW	<0,5	<1,2	<5	<10	≤25	>25
Blei	(mg/kg)	25-30	HGW	<50	<100	<150	<250	≤500	>500
Kupfer	(mg/kg)	20-30	HGW	<40	<60	<150	<250	≤500	>500
Zink	(mg/kg)	90-110	HGW	<150	<200	<500	<1000	≤2000	>2000
Chrom	(mg/kg)	60-80	HGW	<90	<100	<150	<250	≤500	>500
Nickel	(mg/kg)	10-30	HGW	<40	<50	<150	<250	≤500	>500
Arsen	(mg/kg)	3-5	HGW	<10	<20	<40	<70	≤100	>100
HCH-Isomere	(µg/kg)	n.n.	HGW	<5	<10	<20	<50	≤100	>100
DDT + Metabolite	n (µg/kg)	n.n.	HGW	<20	<40	<100	<200	≤400	>400
НСВ	(µg/kg)	n.n.	HGW	<20	<40	<100	<200	≤400	>400
PCBs	(µg/kg)	n.n.	HGW	<2	<5	<10	<25	≤50	>50
AOX	(µg/kg)	n.n.	HGW	<20	<50	<100	<250	≤500	>500
Butylzinn-Verb. (µ	ıg/kg Sn)	n.n.	HGW	<10	<25	<75	<150	≤250	>250

^{*} Der 90%-Wert steht an der Stelle der aufsteigend sortierten Wertereihe, die sich aus dem Produkt von 0,9 mit der Anzahl der Messungen ergibt. Nicht ganzzahlige Zahlen werden zum nächst höheren Wert aufgerundet.